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Abstract. This paper is devoted to the methodology of using denotational techniques in software 

design. Since denotations describe the essential components comprising a system and syntax 

provides ways for the user to access and communicate with these components, we suggest that 

denotations be developed in the first place and that syntax be derived from them later. That 

viewpoint is opposite to the traditional (descriptive) style where denotational techniques are used 

in assigning a meaning to some earlier defined syntax. Our methodology is discussed on an 

algebraic ground where both denotations and syntax constitute many-sorted algebras and where 

denotational semantics is a homomorphism between them. On that ground the construction of a 

denotational model of a software system may be regarded as a derivation of a sequence of algebras. 

We discuss some mathematical techniques which may support that process especially this part 

where syntax is derived from denotations. The suggested methodology is illustrated on two small 

examples. 

The authors have the peculiar idea that domains of 

our concept.s can be quite rigorous!)’ laid out before we 

make thejnal choice of the language in which we are 

going to describe these concepts. (. ) What we suggest 

is that in order to sort out your idear, you put your 

domains on the table jirst. 

Scott and Strachey [28] 

1. Introduction 

Denotational semantics is most frequently understood as a method of assigning 

meaning to syntax. It is implicit in such an understanding that syntax comes first 

* Research reported in this paper contributes to project MetaSoft. Sections 1 to 7 are extensively 

revised versions of the corresponding sections in earlier papers [7, 81. The approach to the representation 

of algebras by grammars has been significantly simplified. 
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into the play and that semantics is assigned to it later. In classical textbooks on 

denotational semantics (such as Stoy [29] or Gordon [17]) or in the monographs 

devoted to applications (e.g. Bjorner and Oest [4] or Bjorner and Jones [3]) the 

construction of a denotational model of a software system is regarded as a four-step 

process: 

- first we describe a concrete syntax of the system, 
- then we derive a corresponding abstract syntax, 

- next we define the domains of denotations, 

- finally we assign denotations to syntax. 

The way in which that process is organized is typical to the case where denotational 

techniques are used in formalizing the definitions of existing programming languages. 

In that case concrete syntax is always given ahead and what remains to be done is 

to formally define the semantics. 

Giving formal definitions to existing programming languages was the first 

practical problem tackled on the ground of denotational semantics. Since the early 

experiment with ALGOL-60 (Mosses [24]), many programming languages have been 

formalized on that ground, frequently in supporting a later compiler writing (e.g. 

[4]). On the other hand, the formalization of existing software is not a goal in itself. 

From the very beginning denotational semantics has been aimed primarily as a tool 

for the development of new software. 

This paper is devoted to studying the methodology of using denotational tech- 

niques in software design. By “software” we mean any complex software system, 

which includes but is not restricted to programming languages. Since denotations 

describe the essential components comprising a system and syntax provides ways 

for the user to access and communicate with these components, we suggest that 

denotations be developed in the first place and that syntax be derived from them 

later. More precisely, we suggest that the development of a denotational model of 

a software system be organized in four following steps: 

(1) We develop a mathematical model of the mechanisms of the future system. 

We define the objects which are to be manipulated by the system (numbers, strings 

of characters, databases, spreadsheets, etc.) and the corresponding operations. We 

also define facilities which are offered by a computer environment such as storing 

and restrieving data in computer memory, combining single operations into pro- 

grams, etc. 

(2) Among the mechanisms defined in the first step we select these which are to 

be accessible to the user. 

(3) We define a prototype syntax for the part of the system defined in the second 

step. 

(4) We modify the prototype syntax in making it more user-friendly. 

Of course, each of these steps splits into several substeps. 
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As a mathematical framework for our discussion we have chosen an algebraic 

model advocated in early ADJ’s papers (cf. Goguen, Thatcher, Wagner and Wright 

[16]). In that model a software system is described by two many-sorted algebras: 

Syn of syntax and Den of denotations. A homomorphism between them: 

S:Syn+Den (1.1) 

represents the denotational semantics of Syn in Den. The fact that S is a homomorph- 

ism reflects the compositionality property of our semantics. The carriers of Syn and 

Den, i.e. the syntactic domains and the domains of denotations, are constructed on 

the usual set theory (cf. Blikle and Tarlecki [lo], Blikle [6,9]), rather than as Scott’s 

reflexive domains. 

The idea of developing denotations prior to syntax is, of course, not new. It has 

been suggested, although never explored, by the pioneers of denotational semantics, 

and is implicit in all schools of algebraic semantics. Similar ideas may be found 

also in action semantics (Mosses and Watt [25]) which offers a support in the 

derivation of the algebras of denotations. Finally, in some textbooks on denotational 

semantics, such as [27], it is advocated that a denotational model of a programming 

language be organized around a set of semantic algebras. The author has spelled 

out his ideas for the first time in [5]. 

One of the major aims of this paper is to systematize the development of the 

denotational models of software. This is achieved by splitting the development 

process into several steps where in each step we develop a certain algebra. Although 

it is not essential for the method whether the successive algebras are described 

axiomatically or constructively, in this paper we concentrate on the constructive 

style. A special attention is also given to the problem of deriving (an algebra of) a 

concrete syntax from an algebra of denotations. This leads to several technical 

problems on the representation of the algebras of words by context-free grammars 

and on the possibility of supporting such a derivation process by a computer. 

In Sections 2 and 3 we recall basic algebraic concepts and we introduce a notation. 

This should make our paper selfcontained for readers less familiar with many-sorted 

algebras. In Section 4 we discuss the definability of the algebras of syntax by 

context-free grammars. In Section 5 we briefly discuss the process of the construction 

of an algebra of denotations. Section 6 is devoted to the derivation of syntax from 

an algebra of denotations. Section 7 contains a list of open problems related to the 

derivation of syntax. In Section 8 we illustrate our method by showing how to 

develop a denotational model of a simple wordprocessor. 

2. Introductory concepts 

In this section we introduce a notation and we recall basic algebraic concepts. 

Our notation is a dialect of META-IV (the metalanguage of VDM [3]) and has been 

thoroughly described in [6]. 
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For any sets A and B: 

AIB 
A+B 
A-B 
A+,B 

A’* 

denotes the union of A and B, 
denotes the set of all total functions from A into B, 

denotes the set of all partial functions from A into B, 
denotes the set of all finite-domain functions, called mappings 

from A into B, 
denotes the set of all finite tuples (a,, . . . , a,) over A including 

the empty tuple ( ), 

A’+ denotes A’* without the empty tuple ( ), 

A-set denotes the set of all subsets of A, 
A-finset denotes the set of all finite subsets of A. 

BY “l” we denote the operation of concatenation both for single tuples and for 

languages. If L is a language, i.e. if LC A’* for some A, then L* denotes the usual 

Kleene-iteration of L. Observe that “c*” is applicable to any set whereas “*” is 

applicable only to languages. Moreover (A’*)* = A” is the set of tuples of the 

elements of A, whereas (A’*)‘* is a set of such tuples whose elements are the tuples 

of the elements of A. 
From Tennent [30] we borrow a convention of writing domain equations in the 

form: 

d : D = (domain expression) 

by which we mean that d possibly with indices denotes an element of domain D. 
For indexed families {A,}i,, we use alternatively the notation {A.i 1 i E I}. 

By f:A+B,f:AsB orf:A+, B we denote the fact that f is respectively a 

total function, a partial function, or a mapping from A to B. For curried functions 

likef:A+(B+(C+D)) wewritef:A + B+ C+ D. We also writefa forfja) and 

ja.b.c for (($u).~).c. For uniformity reasons each many-argument noncurried func- 

tion is regarded as a one-argument function on tuples. Consequently we write 

$(a,, . . . , a,) for f(u,, . , a,). Formally this should have led us to writing t(a) 

rather than $a, but we keep the latter notation as more natural and simpler. If 

f:A-_,B and g:BsC, thenf.g:AqC where 

f. g={(u, ~)~(3b)(jIu=b&g.b=c)}. 

In the definitions of functions we frequently use conditional expressions of the form 

b + c, d which stand for 

if b then c else d. 

This may be iterated in which case the expression 

b, + (a,, (b-f. . .(b, + a,,, a,+,). . .I) 
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is written in a column: 

bn + 4, 

TRUE + a,,, I 

Sometimes in conditional expressions we shall nest “local constant declarations” 

of the form let x = exp, in exp, borrowed from VDM. The scope of such a declaration 

is the expression expz. 

For any partial functionf: A G B, by f [ b/u] where a E A, b E B andf[ b/u] : A 1: B 

we denote the following modification off: 

f [b/a].x = x = a + b,Jx. 

BY [h/a,, . . . > b,/a,] we denote a mapping which assigns b, to ai for i = 1, . , n. 

Now we shall briefly recall some basic concepts associated with many-sorted 

algebras. We also fix our notation. By a Signature we mean a four-tuple: 

Sig = (Sn, Fn, sort, a&y), 

where Sn is a nonempty possibly infinite set of sort names, Fn is a nonempty possibly 

infinite set of function names and where 

sort : Fn + Sn, 

arity : Fn + Sn’* 

are functions which associate sorts and arities to function names. By an algebra 

over the signature Sig, or shortly by a Sig-algebra, we mean a triple Alg= 

(Sig, car,fun) where cur and fun are functions interpreting sort names as nonempty 

sets and function names as total functions on these sets. More precisely, for any 

sn E Sn, car.sn is a set called the carrier of sort sn, and for any fi E Fn with sort.fn = sn 

and arity.fn = (sn, , . . . , sn,), fun.fn is a total function between corresponding 

carriers, i.e. 

fun.fn : car.sn, x . . . X car.sn, + car.sn. 

If arity.fn = ( ), then fun.fn is a zero-ary function, i.e. accepts only the empty tuple 

“( )” as an argument. The fact thatf is a zero-ary function with value in A is denoted 

by f: + A and the unique value off is denoted by j( ). Zero-ary functions are also 

called algebraic constants. 

In applications we frequently do not define the signature of an algebra explicitly. 

As long as we do not talk about the derivation of syntax, a signature usually remains 

implicit in the definitions of the carriers and the operations of the algebra. Consider 

as an example a two-sorted algebra of integers and booleans with the carriers 
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IN={ . ..) -l,O,l,. . .} and Boo/ = { tt,ff} and with the following operations: 

I:+ Int an integer constant “one”, 

+: Int X Int + Int an integer operation of addition, 

tt : + Boo1 a boolean constant “true”, 

< : Int x Int + Boo1 an integer-to-boolean function “less than”, 

- : Boo1 + Boo1 a boolean function “not”. 

The signature of this algebra is implicit (up to the choice of the names of sorts and 

functions) in the above description. For instance we may choose: 

Sn = { int, bool}, Fn = {one, plus, true, less, not}, 

in which case the functions of sort and arity are defined as follows: 

arity.one = ( ), 

arity.plus = (int, int), 

etc. 

sort.one = int, 

sort.plus = int, 

Now, our algebra may be more formally defined as Arith = (Sig, car,fun), where 

Sig has been defined above and where: 

car.int = Int, 

car. boo1 = Bool, 

etc. 

fun.one = 1, 

fun.plus = f, 

Two algebras with the same signature are called similar. If Alg, = (Sig, car,,fun,) 

for i = 1,2 are two similar algebras, then we say that Alg, is a subalgebra of Alg, 
if for any sn E Sn, 

car,.sn C car2.sn 

and for any fn E Fn, fun,.fn coincides with jiun,.fn on the appropriate carriers of 

Alg,, i.e. if the restriction of fuq.fn to the carriers of Alg, is identical to fun,.fn. 

By a homomorphism from Alg, (a source algebra) into Alg, (a target algebra) we 

mean a higher-order function H which with any sort sn E Sn assigns a function: 

(1) H.sn : car,.sn + car2.sn (2.1) 

such that for any fn E Fn with sort.fn = sn: 

(2) if arity.fn = ( ), then 

H.sn.(fun,.fn.( )) = fun&z.( ), 

(3) if arity.fn = (sn, , . . . , sn,) with n > 0, then for any tuple 

of arguments (a,, . . . , a,) E car.sn, x . . . x car.sn, we have 

H.sn.(fun,.fn.(a,, . . . , a,)) =fun,.fn.(H.sn,.a,, . . , H.sn,.a,). 
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If all the component functions H.sn are onto-functions, then H is called an 

onto-homomorphism. Otherwise it is called a strictly into-homomorphism. If each 

component of a onto-homomorphism H is reversible, then H is called an isomorph- 

ism. The componentwise reverse of H is then denoted by HP’. All the elements of 

Alg, which are the images of some elements from Alg, through H constitute a 

subalgebra of Alg, called the image of Alg, . 

By H : Alg, + Alg, we denote the fact that H is a homomorphism from Alg, into 

Alg,. If 

H,z: Alg, -t Alg, and HI3 : Algz + Alg, , 

then H,, . Hz3 = { H,,.sn . H,,.sn 1 sn E Sn} is a homomorphism from Alg, into Alg,. 

As we already mentioned before the signature of an algebra may constitute a 

basis for the construction of a language (syntax) of expressions over that algebra. 

Starting from a signature Sig = (Sn, Fn, sort, arity) we construct the least family 

{car,.sn 1 sn E Sn} of formal languages of terms over the alphabet Fn I{( , ), “, “} such 

that for any sn E Sn and any fn with sort.fn = sn: 

(1) if arity.fn = ( ), then .fn E car,.sn, 

(2) if arity.fn = (sn,, . . . , sn,), then for any terms 

ter, E car,.sn,, ,fn^(^ter,*, A . . . A, *terNA) E car,.sn, 

where “*” denotes the concatenation of terms. If all the sets car,.sn are not empty, 

then we may define a so-called Sig-algebra of terms: 

Term = (Sig, cur,, fun,), 

where the operations are defined as follows: for any fn with sort.fn = sn 

(1) if arity.fn = ( ), then fkn,.fn.( ) = fn, 

(2) if arity.fn = (97, , . . . , sn,,) and ter, E car,.sq, then, 

fun,.j‘n.( ter, , . . . , ter,) = fnA(&terIA, A. . . *, *ter, A). 

For instance, in the case of the algebra Arith we have: 

car,.int = {one, plus(one, one), plus(one, plus(one, one)), . . .>, 

cur,. boo1 = {true, not( true), less( one, one), . . .}, 

fun,.plus.(plus(one, one), one) = plus( plus(one, one), one), 

etc. 

(2.2) 

The algebra Term over Sig is a so-called initial algebra of terms. It constitutes a 

universal language of expressions for the class of all Sig-algebras. Formally, for any 

Sig-algebra Alg = (Sig, car, fun) there exists exactly one homomorphism 

T: Term + Alg. 

This homomorphism represents the semantics of Term in Alg and is called the 

canonical term-homomorphism for Alg. It maps terms into their corresponding values 
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in Alg and is defined in the following way: 

(1) for any primitive term fn with sovt.fn = sn and arity.fn = ( ) 

Tsn.fn =fun.fn.( ), 

(2) for any compound term fn( ter, , . . . , ter,), where sort.fn = sn and 

arity.fn = (sn, , . . . , sn,), 

Tsn.fn( ter, , . . . , ter,) =fun.fn.( T.sn,.ter,, . . . , T.sn,.ter,). 

E.g. in Arith we have: 

T.int.one = 1, 

T.int.plus( one, one) = 2, 

T.bool.less(one, one)=fJ; 

etc. 

(2.3) 

Observe that the definition of T is an instance of the general definition (2.1) of a 

homomorphism. This implies that T is indeed a homomorphism. On the other hand, 

since any homomorphism from Term into Alg must satisfy (2.3) and since these 

equations define T unambiguously, T is the unique homomorphism between our 

algebras. 

Let Sig, = (Sq, Fn,, sort,, arity,) for i = 1,2 be two arbitrary signatures and let 

Alg, = (Sig,, car,,fun,) be two algebras over these signatures. We say that: 

(a) Sigz is an extension of Sig,, or Sig, is a restriction of Sig,, if Sn, C Sn,, 

Fn, c Fnz and the functions sort, and arity, coincide with sort, and arity, on 

Fn, 

(b) Alg, is an extension of Alg, or Alg, is a restriction of AlgZ if: 

(1) Sig, is an extension of Sig,, 

(2) for any sn E Sn,, car,.sn c car,.sn, 

(3) for any fn E Fn, , fun,.fn coincides with fun,.fn on appropriate carriers 

of Alg, . 

In other words, we extend an algebra if we add new carriers, new functions and 

new elements. 

3. Reachability, ambiguity and initiality 

In general, not every element of an algebra is a value of a term. E.g. in Arith 

terms of sort int assume only positive values, whereas car,.int contains all integers. 

The elements of an algebra which are the values of some terms are called reachable 

elements. Elements which are not reachable are referred to as the junk of an algebra. 

For each sort the set of all reachable elements of that sort is called the reachable 

carrier of that sort. 

As is easy to see, an element is reachable in an algebra Alg if and only if it can 

be constructed from the constants of Alg in using the operations of Alg. This 
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immediately implies that reachable carriers are always closed under all the operations 

(functions) of Alg and therefore, if none are empty, they constitute the least 

subalgebra of Alg. We call this subalgebra the reachable subalgebra of Alg and 

denote it by AlgR. If Alg and AlgR are equal, then Alg is called a reachable algebra. 

Reachable algebras play a very important role in our applications. In particular 

the algebras of syntax Syn (cf. (1.1)) are always reachable since syntax is always 

defined in a constructive way. Below we recall some important properties of reach- 

able algebras. 

Proposition 3.1. The following properties are equivalent: 

(1) Alg is reachable, 

(2) the (unique) evaluating homomorphism T: Term + Alg is onto, 

(3) any homomorphism which has Alg as a target is onto. 

Proposition 3.2. If Alg, and Alg, are similar and if Alg, is reachable, then there 

exists at most one homomorphism: 

H : Alg, + Alg,. 

If that homomorphism exists, then the image of Alg, in AlgZ is reachable. 

Since this proposition plays an especially significant role in our applications we 

show its proof. 

Proof. Let Term be the common algebra of terms of both algebras and let T, and 

T, be the unique corresponding homomorphisms (Fig. 1). If H exists, then T, . H 

is a homomorphism from Term into Alg, and since Tz is a unique such homomorph- 

ism the following equation must hold: 

T, . H = T,. (3.1) 

Therefore, since T, and T2 are unique and Alg, is reachable, H must be unique as 

well. The reachability of the image of Alg, in Alg, also follows from (3.1). 0 

Fig. 1 
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In our applications the diagram of Fig. 1 usually represents a denotational model 

of a software system where Alg, is an algebra of denotations, Alg, is a corresponding 

algebra of (final concrete) syntax and Term is the algebra of prototype (abstract) 

syntax (cf. Section 1). The homomorphism H represents the denotational semantics 

of Alg, in Alg,. 

So far we have noticed that between syntax and denotations there may be at most 

one denotational semantics. Of course, there may also be none. Below we formulate 

some conditions which guarantee the existence of a homomorphism between two 

similar algebras. 

We say that Alg, is not more ambiguous than Alg,, in symbols 

Alg, 5 Alg, , 

if T, identifies not more elements than T2, i.e. if for any sn E Sn and any t, , t, E 

car,.sn: 

T,.sn.t, = T,.sn.t, implies T,.sn.t, = T,.sn.t,. 

In this definition we do not assume that Alg, is reachable. The ambiguity relation 

is defined in the class of all Sig-algebras and constitutes a preordering, i.e. is reflexive 

and transitive. 

The defined preordering has a natural intuitive interpretation. Observe that for 

each of the algebras Algi each term t E car,.sn describes a way of the construc- 

tion of the (reachable) element Ti,.sn.t. If two different terms have the same value 

in the target algebra, then they describe two different ways of the construction of 

the same element, E.g. in Arith the terms plus(one, plus(one, one)) and 

plus(plus(one, one), one) describe two different ways of the construction of the 

integer 3. The more ways we have to construct one element in an algebra, the more 

that algebra may be called ambiguous. Moreover, each term may be regarded as a 

parsing tree of a reachable element. In fact, if Alg is an algebra of syntax generated 

by a CF-grammar (Section 4), then terms correspond exactly to parsing trees. 

Proposition 3.3. Zf Alg, and Alg, are similar and if Alg, is reachable, then the 

(unique) homomorphism H : Alg, + Alg, exists if and only if Alg, L Alg,. 

Proof. If H exists, then by (3.1) T2 must identify values at least as much as T, . (It 

identifies exactly as much as T, iff H is an isomorphism.) If Alg, c Alg,, then the 

homomorphism H may be constructed in the following way: For any sn E Sn and 

any a E car,.sn take an arbitrary t E car,.sn such that T,.sn.t = a and set 

H.sn.a = T,.sn. t. 

Since Alg, is reachable, t always exists and since T2 glues at least as much as Tl, 

the choice of t does not matter. It is not difficult to prove that H is indeed a 

homomorphism. Cl 
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As is easy to see, the algebra Term is less ambiguous than any other algebra Alg 

with the same signature, i.e. Termc Alg. An algebra for which the opposite relation- 

ship, i.e. AlgcTerm, is satisfied is called unambiguous. In an unambiguous algebra 

each reachable element is the value of exactly one term, i.e. may be constructed in 

exactly one way. If that property is not satisfied, then the algebra is called ambiguous. 

An algebra Alg is called initial in the class of all Sig-algebras, or is simply called 

Sig-iniCa1, if for any other Sig-algebra Alg, there is exactly one homomorphism 

from Alg into Alg, . 

Proposition 3.4. The following properties are equivalent: 

(1) Alg is initial, 

(2) Alg is reachable and unambiguous, 

(3) Alg is isomorphic to Term. 

Proofs are immediate from previous propositions. 

4. Algebras versus grammars 

In our model of a software system syntax is represented by an algebra. This allows 

us to express the compositionality principle of denotational semantics and to 

formulate the rules governing the systematic derivation of syntax (Section 6). It 

turns out, however, that in applications it is rather inconvenient to describe the 

algebras of syntax in the style used for the algebras of denotations, since this leads 

to long definitions with a lot of superfluous technical notation. 

Below we discuss a technique of defining algebras of syntax by context-free 

grammars. This is not only more common for the definitions of syntax, but also 

better fits into the style of syntax derivation through successive refinements and 

provides an adequate starting point for the construction of parsers. 

The idea of associating algebras with grammars is not new. It has been already 

explored by Goguen et al. [ 161, where a grammar gives rise to an algebra of parsing 

trees referred to as abstract syntax. In this paper we are interested mostly in the 

derivation of a concrete syntax, the abstract syntax being developed only at an 

intermediate stage. We analyze therefore, the relationship between grammars and 

the algebras of words, rather than of parsing trees. 

For technical reasons we slightly redefine the classical concept of a context-free 

grammar by associating it with a signature. Let Sig = (Sn, Fn, sort, arity) be an 

arbitrary signature with finite sets Sn and Fn, and let T be a finite alphabet of 

terminal symbols disjoint with Sn. By a Sig-grammar we mean a pair, 

Gra = (Sig, pro), 

where pro is a function which assigns productions to functional symbols: 

pro: Fn+(Snx(T(Sn)‘*), 

pro.fn = (sn, xOsn, . . . s,_,sn,x,I) 
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and where sn = sort.fn, (sn, , . . . , sn,) = arity.fn and each xi is a word over the 

alphabet T. The elements of Sn play the role of nonterminals. For the sake of 

uniqueness (of T) we assume that T is the least alphabet such that all xi are words 

over T. 

Unlike in the traditional setting (see e.g. Harrison [IS]) we do not distinguish 

any initial nonterminal in a grammar. We do not do so since in our case a grammar 

defines a class of languages rather than a single language. With every Sig-grammar 

Gra = (Sig, pro) over a terminal alphabet T we unambiguously associate a Sig- 

algebra of words AL.Gra = (Sig, car, fun) such that: 

(1) for any sn E Sn, car.sn is the set of all words over T derivable in the usual 

sense from the nonterminal sn by the productions of the grammar; 

(2) for any fn E Fn with sort.fn = sn and arity.fn =(sn,, . . , sn,) if pro.fn = 

(sn, xOsn, . . x,_,sn,x,,), then 

fun.fn.(y,, . . . , YJ = xoyl . . . x~-~Y,x~. (4.1) 

It is not difficult to prove that AL.Gra is well-defined, i.e. that its carriers are 

closed under its operations. One can also prove that every derivable word is 

constructable in the algebra, i.e. that our algebra is reachable. 

We say that Gra defines AL.Gra. We say that a Sig-algebra Alg is a context-free 

algebra (abbreviated CF-algebra), if there exists a Sig-grammar Gra which defines 

that algebra, i.e. for which AL.Gra=Alg. 

In the remaining part of this section we discuss the problem of the definability 

of the algebras of words by grammars. This is an important practical problem which 

we have to solve if we wish to organize the process of the derivation of syntax 

in a systematic way and if we wish to support it by a computer. At the same 

time, however, this is a rather technical problem and therefore we suggest that the 

readers who are not especially interested in the derivation of syntax skip the rest 

of this section in the first reading. In that case we only advise the reading of the 

Proposition 4.3. 

By a syntactic algebra we mean any reachable algebra of words with finite sets 

of sorts and operations. Of course, every context-free algebra is a syntactic algebra. 

The converse implication is not true since in every context-free algebra every carrier 

must be a context-free language. It is also true, that the context-freeness of carriers 

is not sufficient for the context-freeness of an algebra. As an example consider a 

one-sorted algebra with a carrier A = {a, au} and two operations: 

h:+A, f:A+A, 
(4.2) 

h.( ) = a, jIy = aa. 

This algebra is not context-free since f is not expressible by a production in the 

sense of (4.1). Of course, if we modify our algebra by replacing f by f ‘: + A with 

f’.( ) = aa, then the algebra becomes context-free. 

A syntactic algebra with context-free carriers may be non-context-free for one 

more reason, namely if its operations “permute the arguments”. If in a syntactic 
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algebra we have an operation g with a signature say: 

g:Ax B+ C, 

then for our algebra to be context-free, g must be defined by an equation of the 

form g.(a, b) = xOax, bx,. If we set 

g.( a, b) = x,bx, uxz , 

then there is no grammar which defines our algebra since any production which 

corresponds to the signature of g must be of the form C + x,,Ax, Bx2. This example 

shows that our concept of a CF-algebra may be a little too narrow for applications, 

since it forces the designer of syntax to obey to the order of arguments chosen by 

the designer of denotations. We discuss that problem in more detail at the end of 

the section. 

Below we formulate a property of syntactic algebras which is necessary and 

sufficient for context-freeness. We start from the introduction of some auxiliary 

concepts. Let Alg = (Sig, cur,fun) with Sig= (51, Fn, sort, urity) be an arbitrary 

syntactic algebra over some (minimal) alphabet T. If for an operation symbol fir 

with urityLfn = (sn, , . . . , sn,) where n 3 0, there exists a string of words (x,, . . , x,,) E 

( Tc*Yn+‘) such that for any argument (y, , . . . , yn) of that function: 

fun..Mv,, . . . > Yn) = XOYl . . xn-IYJ, 

then (x0,. . . ,x,,) is called a skeleton of fn (and of,fun.fn) in Alg. 

A function in a syntactic algebra may have from none to many skeletons. Consider 

the following one-sorted algebra with a carrier {u}~+: 

h,.( >= a, f1.Y = .F. (4.3) 

Function h, has exactly one skeleton, namely (a), and functionf, has two skeletons: 

(E, a) and (a, F) where E denotes the empty word. Function f from (4.2) has no 

skeleton at all. A function which has a skeleton is called a skeleton.function and if 

this skeleton is unique then it is called a monoskeleton function. 

If every operation of Alg is a skeleton function, then Alg is called a skeleton 

algebra and by a skeleton of Alg we mean any function: 

sk : Fn + (T’*)‘+ 

such that sk.fn is a skeleton of fn. Of course, similarly to functions, also algebras 

may have from none to many skeletons. An algebra which has exactly one skeleton 

is called a monoskeleton algebra. 

With every skeleton algebra Alg = (Sig, cur,fun) and a chosen skeleton sk of that 

algebra we may unambiguously associate a grammar GR.(Alg, sk) = (Sig, pro) where 

for any fn E Fn with sort.fn = sn, urity.fn = (sn,, . . . , sn,,) and sk.fn =(x0,. . . ,x,) 

we set pro.fn = (sn, xosn, . . . x,-,.%x,). By the definition of AL.Gra that grammar 
defines Alg, i.e. 

AL.(GR.(Alg, sk)) = Alg. 
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Consequently, Alg is context-free. Since every context-free algebra is a skeleton 

algebra we can formulate the following simple proposition: 

Proposition 4.1. A syntactic algebra is context-free if and only if it is a skeleton algebra. 

In Section 6 we discuss a systematic method of the derivation of an algebra of 

syntax Syn from a given algebra of denotations Den. This consists in constructing 

a sequence of syntactic algebras 

Syn,, . . . , Syn, 

such that Syn, = Term, Syn, = Syn and each Syn; is a homomorphic image of Syn,_, . 

Of course, Term is a skeleton algebra (cf. (2.2)), hence is context-free. It turns out, 

however, that a homomorphism may destroy the context-freeness of an algebra. 

Indeed, take as a source algebra the algebra (4.3) which is obviously context-free, 

and as a target algebra the algebra (4.2) which is not context-free. The (unique) 

homomorphism between them ic i,.a” = n = 1 + a, aa for any n 3 0. 

Also an isomorphism may destroy the context-freeness of an algebra. Consider 

again (4.3) as a source, and as a target a one-sorted algebra with the carrier 

{anb”cn 1 n = 1,2,. . .} and with the following operations: 

h,.( ) = abc, 

fi.anbncn = an+lbn+lCn+l for n = 1,2,. . . . 

Of course, our new algebra is not context-free and the corresponding (unique) 

isomorphism between them is defined by: 

I.a”=a”b”c” for n=1,2 ,.... 

Let Alg, = (Sig, cari,funi), i = 1,2, be two syntactic algebras over a common 

signature Sig = (Sn, Fn, sort, arity) and let H : Alg, + Alg, be a (unique) homomorph- 

ism between them. We say that H is a skeleton homomorphism if there exists a function 

sk : Fn + (T*)” 

called a skeleton of H such that for every fn E Fn with sort.fn = sn, arity.fn = 

(sn,,..., sn,,) and sk.fn = (x0, , . . , x,): 

H.sn.(fun,.fn.(y,, . . . , Y,)) = xdff.sn,.y,) . . x,-l~H.sn,.yn)x, (4.4) 

for any argument (y, , . , . , y,,) of fun,.fn. Similarly to functions, also homomorphisms 

may have from none to many skeletons. E.g. both our formerly defined homomorph- 

isms which have (4.3) as a source have no skeletons. 

Proposition 4.2. For any syntactic algebra Alg the following properties are equivalent: 

(1) Alg is context-free, 

(2) every homomorphism which has Alg as a target is a skeleton homomorphism, 

(3) there exists a skeleton homomorphism which has Alg as a target. 
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Proof. Let Algz be context-free and let sk be one of its skeletons. Consider 

an arbitrary Alg, with a homomorphism H : Alg, + Alg,. For every fn E Fn with 

sort.fn = sn, arity.fn = (sn,, . . . , sn,,) and sk.fn =(x0, . . . , x,,) we have 

H.sn.(fun,.fn.(y,, . . . , v,,>) = 

fur+fn.(H.sn,.y,, . . . , H.sn,.y,,) = 

.x,(H.sn,.y,). . .x,,~,(H.sn,.y,,)x,. (4.5) 

This proves that H is a skeleton homomorphism, i.e. that (1) implies (2). The 

implication from (2) to (3) is obvious because the set of homomorphisms which 

point to Alg, is not empty since it contains the canonical term-homomorphism. Now 

assume that there exists Alg, with H : Alg, + Alg, which is a skeleton homomorphism. 

Let sk be the skeleton of this homomorphism and take an arbitrary .fn E Fyz with 

sorr..fn = sn, arir~~.j”n = (sn, , . . , , sn,), sk.fn =(x0, . . . , x,,) and an arbitrary argument 

tuple (w, , . . , w,) for funz.fn. Since Alg, is reachable H must be onto (Proposition 

3.1) and therefore there exists a tuple (y,, . , y,,) of elements of Alg, such that 

H.sn,.y, = w,. Consequently 

fun,.,fn.( w, , . . , i-v,) = 

_tiin2.fn.(H.sn,.y,, . . . , H.sn ,,.. v,,>= 

H.sn.(_fun,.fn.(y,, . . . , y,)) = 

xdH.sn,..v,) . . . x,-I(H..m.y,)x, 

This proves that sk is a skeleton of Alg,. Hence Alg, is context free. 0 

Observe that the grammar of a target algebra is always implicit in the definition 

of a corresponding skeleton homomorphism. Indeed, for any equation of the form 

(4.4) the corresponding production is: 

sn + sk,fn. 

Examples will be shown in Section 6. In the same section we shall also see that our 

approach to the derivation of syntax will allow, and encourage us to use ambiguous 

grammars. Below we define that property formally for grammars over signatures. 

A Sig-grammar Gra is said to be unambiguous if for any sn E Sn the corresponding 

traditional grammar with sn as the initial symbol, is unambigous in the usual sense 

(cf. [lS]). In the opposite case Gra is said to be ambiguous. 

Proposition 4.3. A grammar Gra is unambiguous if and only if the algebra AL.Gra 

is unambiguous. 

The proof of this proposition (which we leave to the reader) is based on the fact 

that terms over the signature of Gra unambiguously represent parsing trees over 
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Gra. More formally, if T: Term + AL.Gra is the canonical term-homomorphism for 

AL.Gra, then for any sn E Sn and any x E carsn the elements of the set 

represent-and in fact may be regarded as-all parsing trees of x in the grammar 

Gra,s,. 

At the end of this section one remark is in order. We have to say that for the 

sake of making the theory possibly simple we have assumed a simplified definition 

of a grammar over a signature where the order of sorts in the arity of a functional 

symbol determines the order of nonterminals on the right-hand side of the corre- 

sponding production. This makes an algebra with the operation: 

while : Command x Expression + Command, 

while.( corn, exp) = while exp do corn od 

not context-free since while permutes corn and exp whereas any production with 

the signature of while cannot do that. For applications this means that the signature 

of the algebra of denotations determines the order in which syntactic components 

appear in syntactic compound objects. This is, of course, not very practical since it 

forces us to think about concrete syntax when we design denotations. 

There seems to be at least two ways of repairing the described situation. One 

consists in redefining the concept of a grammar over a signature by allowing 

permutations. In that case we have to redefine also the concept of a skeleton and 

to introduce a few further technicalities if we want to have a unique association of 

a grammar with a skeleton to an algebra. Such a solution has been described in [8], 

although-as has been pointed out to the author by M. RyCko-it requires further 

technical modifications. Another solution consists in keeping the definition of a 

Sig-grammar unchanged while allowing that the signature of the algebra of syntax 

does not necessarily coincide with that of the algebra of denotations. This requires 

the redefinition of the concept of a homomorphism by enriching it with the morphism 

of signatures (cf. [13]). Such a solution introduces some additional mathematical 

machinery, but it seems more appropriate than the former since the signature 

morphisms are known to be useful in the specifications on software anyway. We 

leave this as a little research problem to our readers (cf. Section 7). 

5. Designing denotations 

The method which we discuss in this paper consists of developing the denotational 

model (1 .l) of a software system in two basic steps: first we develop the algebra of 

denotations Den, then we derive from it a corresponding algebra of syntax Syn. Of 
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course, each of these steps consists of many substeps. In this section we briefly 

discuss the development of Den. The derivation of Syn is discussed in Section 6. 

The development of Den constitutes the most creative step in the mathematical 

process of software development. Of course, what this step looks like depends on 

the type of software which we design. The development of Den for one programming 

language will differ from the development of Den for another programming language, 

as much as one language may differ from another. The development of Den for a 

language will differ from the development of Den for an operating system and this 

will differ from the development of Den for a database system. The art, craft and 

science of developing Den is not much less than just the art, craft and science of 

the mathematical engineering of software and therefore goes far beyond the scope 

of this paper. In this section we restrict ourselves to only a few general remarks, 

remarks which are independent of the kind of a software system under consideration. 

We start from an observation that in general the algebra Den represents only a 

small user-visible part of a corresponding software system. For instance, in a database 

management system we usually have (hidden) procedures which temporarily destroy 

some constraints imposed on databases and which, therefore, are not to be seen by 

the user. In an operating system or in a compiler the user has a direct access to 

only a very few functions of the system. It seems advisable, therefore, that the design 

process of a software system start from the development of an algebra Sys of the 

whole system, which we later restrict to Den by explicitly indicating which of the 

operations are to be seen by the user. 

From a general viewpoint the development of Sys may be compared to program- 

ming in a high-level functional language. As in programming, also here, we may 

choose a bottom-up approach and a top-down approach. 

In the bottom-up approach a software system is regarded as a computer environ- 

ment which supports the manipulation of objects of certain types by means of some 

operations. First step towards the development of Sys consists, there, of defining 

an algebra with these objects and operations. We call it an algehru of data and 

denote by Dat. For instance, if we design a database management system, then the 

carriers of Dat contain such objects as numbers, logical values, character strings, 

records, databases, reports, etc. whereas operations are arithmetic, Boolean and 

string operations, the operations on records and databases, the generators of reports, 

etc. 

When we are done with Dat we proceed to the next step where we describe a 

system which supports the use of the mechanisms of Dat in a computer environment. 

Formally, we define the algebra Sys. Since in a computer data are not available in 

isolation, but only as objects stored in a memory, we introduce a mathematical 

model of a memory state and we define a domain of functions which we call 

evaluators and which map states into data. Then we introduce a domain of declarators 

which are functions from states to states and which describe the mechanisms of 

putting data into the store. If we design a system with imperative mechanisms, then 

we also introduce a domain of executors, which are again functions from states to 
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states, but which have some slightly different properties than declarators. In the 

context of syntax the evaluators, declarators and executors play the role of the 

denotations of expressions, declarations and commands respectively. 

The sets of evaluators, declarators and executors constitute the major carriers of 

Sys. The operations on the elements of these carriers correspond to major program- 

ming facilities of the system, e.g. in a typical programming language they correspond 

to the constructors of expressions, declarations and commands. We shall see this 

in an example at the end of the section. 

Now a few words about the top-down approach. In that case we regard a computer 

system as a machinery which is supposed to do a certain job and we postpone till 

later the decision about the selection of primitive tools (represented by Dat), which 

the system may need in order to perform that job. Formally, we start from a 

“parameterized” description of Sys, where some carriers and/or operations are left 

unspecified. As the design process progresses we “fill the holes” in the definition 

of Sys, and in doing that we define a suitable algebra Dat. An example of a top-down 

design is shown in [7]. 

The bottom-up approach is convenient if we start from a fixed set of basic 

operations which we want to put together into a software system. For instance, if 

we design a system handling spreadsheets, we shall first define a suitable many-sorted 

algebra of numbers, texts, spreadsheets, etc. and then we shall extend it by all 

computer facilities such as storing data in and retrieving them from the memory, 

elaborating data in a programmable way, printing data, sending data to other 

computers, etc. 

The top-down approach seems suitable whenever we want to, and can, postpone 

the decision about the primitives of the system till we define the major functions 

of the system. This may happen, for instance, when we design a computer system 

which is supposed to react in some expected way with some environment, e.g. with 

a plant-control system. This approach may be compared to the “behavioral school” 

in software specification, where the external behavior of the system is described in 

the first step of system development (cf. [26] and references there). 

The process of developing Den is summarized on the diagram of Fig. 2. The 

algebra Dat defines a collection of basic tools which must be provided by the future 

system. The algebra Sys defines a workshop where the former tools may be used in 

a computer environment. This includes the mechanisms of storing data and combin- 

ing simple universal tools (basic instructions) into complex problem-oriented tools 

(programs). The algebra Den contains a selection of the mechanisms of Sys which 

are to be seen by the user. 

Dat s 
bottom~up sys reSfrlCtl0” ) Den 
top~dow” 

basic full user’s 

tools workshop interface 

Fig. 2 
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Now, let us briefly discuss the mathematical techniques which may be chosen in 

defining our three algebras. Essentially they may be split into two classes: axiomatic 

(property-oriented) techniques and constructive (model-oriented) techniques. 

Axiomatic techniques have been extensively studied on the ground of algebraic 

semantics approach and several of them were implemented (see e.g. Goguen, 

Meseguer and Plaisted [15] or Ehrig and Mahr [13]). Their major advantage is 

abstractness. An axiomatic definition lists the intended properties of the future 

system. The obligation of the implementation designer is to satisfy these properties, 

no matter how. The disadvantage of axiomatic specifications is that the completeness 

and the consistency of such specifications is usually far from evident and may be 

difficult to prove (cf. Titterington [31]). This problem is, of course, the more critical 

the larger and more complicated is the system. Axiomatic definitions require also 

more mathematical maturity from the designer and provide less hints about how to 

implement the system. Of course, we do not talk here about a standard implementa- 

tion of axiomatic definition by rewriting rules (cf. Dershowitz [ 121 or Meseguer and 

Goguen [23] and references there), since this-at least so far-may only be regarded 

as a rapid-prototyping facility. 

Constructive techniques lead to definitions which are, of course, less abstract. 

Each such a definition describes a concrete mathematical model of a system and 

therefore it is much easier to be checked for completeness and consistency and gives 

more hints about a future implementation. On the other hand, the adequacy of such 

a definition, i.e. the satisfaction of some expected properties of the system, is now 

implicit and must be proved. 

Contrary to what is usually claimed, the axiomatic techniques do not leave-in 

the opinion of the author-more freedom of choice for an implementor than do 

the constructive techniques. They only lead to definitions which provide less hints 

about a future possible implementation than constructive definitions. An axiomatic 

definition of a system, i.e. of an algebra Sys, identifies a class of algebras which are 

somehow equivalent, e.g. mutually isomorphic. It identifies this class by a set of 

axioms, which tell very little about what the elements and the operations of these 

algebras can be, but only what properties do they have. A constructive definition 

identifies also a class of algebras, just that in this case it explicitly points to one 

element of this class, the others being (implicitly) all appropriately equivalent 

algebras to the chosen one, e.g. isomorphic with it. The obligation of an implementor 

consist in each case of finding an implementation algebra Imp which is appropriately 

related, e.g. by a homomorphism, to any algebra in the former class. Of course, 

given a constructive definition of an algebra, the implementor may use it in the 

construction of the definition of Imp. Moreover, he may be tempted to use it which, 

of course, somehow “spoils” his imagination. But from the mathematical viewpoint 

he has in each case the same freedom of choice. 

Of our algebras of Fig. 2 only Dat seems to be an obvious candidate for an 

axiomatic definition. Of course, this always depends on the system under design, 

but in general Dat is of an order of magnitude simpler than Sys. It should be 
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emphasized at this point that an axiomatic definition of Dat does not imply any 

(mathematical) obligation to define Sys axiomatically as well. If we have a sufficiently 

rich definitional metalanguage, then we may define Dat axiomatically and later refer 

to this definition in a constructive definition of Sys. Since Den is a restriction (reduct) 

of Sys its definition is always of the same style as that of Sys. In applications, the 

definition of Den consists of just a list of selected operations and carriers of Sys. 

Example 5.1. In this example we discuss the development of an algebra of denota- 

tions of a simple software system. The development of a corresponding (algebra 

of) syntax is described in the next section (Example 6.1). 

Assume that we want to design a computer system which communicates with the 

external world by receiving and emitting messages and where we can elaborate each 

received message in a programmable way. The communication with the external 

world is to be automatic, i.e. not programmable. For the simplicity of example we 

assume that each message consists of only two values, each value being either a 

natural number or a boolean value or an error element. 

We shall design our system in a bottom-up style thus starting from the algebra 

of data. First we define the carriers of this algebra: 

n: iVut={l,. . . , N, err}, 

b : Boo1 = { tt,fi ee}. 

In each of these carriers we have included a so-called abstract error (cf. Goguen 

[14]) which represents an error signal. We assume to have in Dat the following 

operations: 

one: + Nat, 

plus : Nat x Nat + Nat, 

times : Nat x Nat + Nat, 

less : Nat x Nat + Bool, 

and : Boo1 x Boo1 + Bool. 

For the sake of brevity we explicitly define only three of these operations. As is 

easy to see our algebra is reachable, no matter how times and and are defined. 

one.( )= 1, 

plus.( n, , nJ = less.(n,, n2) = 

n, = err -3 err, n,=err + ee, 

n, = err + err, n, = err + ee, 

n,+n,> N + err, n, < n2 + tt, 

TRUE + n, + n,, TRUE + fJ: 

When we have defined Den we can proceed to the construction of a computer system 
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over that algebra. For simplicity we assume that our system contains only two 

registers-call them x and y-where to store values in computer memory. We define 

four following domains: 

ide : Identifier = {x, y}, 

val: Value = Nat 1 Bool, 

mes : Message = Value X Value, 

sta : State = Ident$er + Value. 

Now, we have to think about the type of actions which our system should be able 

to perform. Again, for the sake of simplicity we assume only four types of such 

actions: readings and writings which correspond to input and output operations, 

evaluators which are used to retrieve and elaborate data stored in the registers x 

and y, and executors which are used to transform states. We introduce therefore 

four further domains: 

rea : Reading = Message + State, 

wri : Writing = State -+ Message, 

eva : Evaluator = State+ Value (expression denotations), 

exe : Executor = State 25 State (command denotations). 

Here we have assumed that readings, writings and the evaluations of expressions 

always terminate. Therefore the first three domains contain only total functions. 

The last domain contains also partial functions since we intend to allow loops in 

the execution of commands. This, of course, does not stand in a contradiction with 

our earlier assumption (Section 2) that all operations in our algebras must be total. 

As we shall see below, executors are to be the elements of Sys rather than its 

operations. 

The next step consists of defining the constructors of readings, writings, evaluators 

and executors. Here we describe the programming facilities of the system. Let us 

start from the readings and writings. We assume to have only one action of each 

of these types. We introduce, therefore, two zero-ary constructors: 

read : + Reading, write : + Writing, 

which we define as follows: 

read.( ).(val, , valJ = [ val,/x, val,/y], 

write.{ ).[ v&,/x, val,/ y] = (val, , val,). 

Note that read is a zero-ary function, whose value read.( ) is a function from 

messages into states. The function write is similar. In an algebraic approach zero-ary 

functions represent constants. Instead of saying that an algebra consists of carriers, 

constants and functions, we have only carriers and functions, the latter possibly of 

a zero-arity. From the viewpoint of applications, constants are primitive actions of 
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the system, i.e. such actions which do not need to be constructed from anything 

“smaller”. 

Now we define the constructors of evaluators. First, with every identifier we assign 

an evaluator that given a state returns the value stored under this identifier in that 

state: 

evaluate : Identifier+ Evaluator, 

evaluate.ide.ste = sta.ide. 

In the context of the future syntax (Section 6) this means that each identifier 

constitutes an expression. The definition of evaluate describes the way in which 

such an expression is evaluated. 

Next, we want to have such evaluators in the system which allow for the applica- 

tions of data-type operations (the operators of Dat) to data retrieved from the store. 

To this end for each operation on data we define a corresponding constructor of 

evaluators: 

e-one : + Evaluator, 

e-plus : Evaluator x Evaluator + Evaluator, 

e-times : Evaluator x Evaluator + Evaluator, 

e-less : Evaluator x Evaluator + Evaluator, 

e-and : Evaluator x Evaluator+ Evaluator. 

(5.1) 

All these constructors are defined according to the same scheme. We give one such 

a definition as an example: 

e_plus.(eva, , eva,).sta = 

let val, = eva,.sta in 

let val, = eva>.sta in 

val, ~6 Nat + err, 

val,& Nat + err, 

TRUE + plus.(val, , val,). 

The evaluator e_plus.(eva, , eva,) evaluates its argument evaluators eva, and evaz in 

the current state and then, if the computed values are of numeric type, applies the 

data-type operation plus to these values. 

Since identifiers have been used in the construction of evaluators, we must be 

able to construct identifiers as well. To this end we introduce two zero-ary construc- 

tors, one for each identifier: 

create-x : + Identijier, create-y: + Identijier, 

create-x.( ) = x, create_y.( ) = y. 

For the implementation this means that the user of the system can somehow “generate 

identifiers from nothing”, e.g. may tape them in from the keyboard. 
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In the last step we define four typical constructors of executors which correspond 

to four typical program connectives in a programming language: 

assign : Identijer x Evaluator + Executor, 

continue : Executor x Executor + Executor, 

while : Evaluator x Executor + Executor, 

if: Evaluator x Executor x Executor + Executor, 

Their definitions are quite routine. We give first two of them as an example: 

assign.{ ide, eva).sta = sta[ eva.sta/ ide], 

continue.(exe, , exeJ = exe, - exe,, 

where “ - ” denotes the composition operation of partial functions (Section 2). 

Now we are ready to define the algebras Sys and Den. The former algebra is 

supposed to describe our future system and therefore it should contain all and only 

these operations which we want to implement in that system. The latter algebra is 

a restriction (reduct) of the former and contains only these operations of Sys which 

are to be accessible by the user. In both cases our choice is pragmatic, rather than 

mathematical, and depends on what we want to have in the system. 

In our example we assume the following signature of Sys: 

read : + Reading, 

write : + Writing; 

create-x : + Identijier, 

create-y : + Identtjier; 

e-one : + Evaluator, 

evaluate : Identifier + Evaluator, 

e-plus : Evaluator x Evaluator + Evaluator, 

e_ times : Evaluator x Evaluator + Evaluator, 

e-less : Evaluator x Evaluator + Evaluator, 

e-and : Evaluator x Evaluator + Evaluator; 

(5.2) 

assign : Identifier x Evaluator + Executor, 

continue : Executor x Executor + Executor, 

while : Evaluator x Executor + Executor, 

if: Evaluator x Executor x Executor + Executor. 

All other operations such as e.g. the operations of Dat are regarded as auxiliary 

functions introduced only for the sake of the definitions of our constructors. They 

do not need to be implemented. 

When we are done with Sys we proceed to the definition of Den, i.e. to deciding 

which operations of the system are to be visible by the user. In our case we shall 

assume that the only nonvisible operations will be read and write. These operations 
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are to be performed by the hardware. The signature of Den results from the signature 

of Sys by removing these two operations with the corresponding carriers. 

Although the choice of the operations, and therefore also of the carriers of our 

two algebras, is essentially only a pragmatic issue, we should make sure that all 

carriers in Den have nonempty reachable parts. A carrier with an empty reachable 

part corresponds to an empty syntactic category (i.e. to an empty carrier of that 

sort in the algebra of syntax) and therefore it is pointless to have such a carrier in 

the algebra. For instance, if we remove from Den the constructors create-x, create-y 

and e-one, then the reachable subalgebra of Den becomes empty and therefore also 

the corresponding syntactic algebra becomes empty. 

6. Designing syntax 

In this section we discuss the process of designing a customized syntax for a 

given algebra of denotations. Given an algebra Den our task consists of constructing 

an algebra Syn with four following properties: 

(1) Syn is a syntactic algebra, 

(2) there is a homomorphism from Syn into Den, 

(3) Syn is context-free, 

(4) the notation offered by Syn is sufficiently convenient. 

Property (2) is called the correctness of Syn with respect to Den. It guarantees 

that Syn may be used as a syntax for Den. The (unique) homomorphism between 

Syn and Den is the corresponding denotational semantics. 

Of course, in order to be correct Syn must have the same signature as Den. This 

implies that these algebras must fit into the diagram of Fig. 3 (cf. also Fig. l), where 

Term is a common algebra of terms and Ts (term-to-syntax), Td (term-to-denotation) 

and Sd (syntax-to-denotation) are the corresponding unique homomorphisms (this 

model will become slightly more complicated in the sequel). 

As our diagram shows, Term is correct and any correct syntax must be a homo- 

morphic image of Term. Since Term is obviously context-free, we suggest that Syn 

Fig. 3 
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be derived from Term through a sequence of stepwise homomorphic refinements 

preserving both the correctness and the context-freeness. This should lead to a 

sequence of algebras Syn,, . . , Syn, such that: 

(1) Syn, = Term, 

(2) each Syn, is a homomorphic refinement of Syn,_, , i.e. there exists a homo- 

morphism Ss, : Syn,-, + Syn,, 

(3) each Syn, is correct, i.e. there exists a homomorphism Sd, : Syn, + Den, 

(4) each Syn, is context-free, 

(5) Syn, = Syn. 

The first step in this derivation process, i.e. the construction of Term, is quite 

routine since the algebra of terms is unambiguously determined by the signature of 

Den. Further steps are, of course, much less routine, since they correspond to design 

decisions, such as passing from a prefix to an infix notation, introducing keywords, 

omitting superfluous parentheses, etc. 

In our approach, the algebra Term is called a prototype syntax and the algebra 

Syn is called a$nal syntax. This roughly corresponds to the traditional classification 

into an abstract syntax and a concreie syntax (see McCarthy [22], Goguen, Thatcher, 

Wagner and Wright [16], Bj$rner and Jones [3]). We use different terms here in 

order to emphasize that our derivation of Syn from Term proceeds within one 

abstraction level, i.e. that we derive our concrete final syntax from an equally concrete 

prototype syntax. 

In the derivation of Syn each Syni is an algebra of syntax since homomorphic 

transformations obviously preserve this property (cf. Proposition 3.2). In each step 

we should check, however, whether Syn, is context-free and correct. The former 

property is checked by inspecting whether our homomorphism has a skeleton 

(Proposition 4.2). In checking the correctness of Syn, two cases are possible: 

(1) If Ss, is an isomorphism, then the correctness of Syn, follows from the 

correctness of Syn,_, since in that case: 

Sd, = ss;’ . Sd,_, 

(2) If Ss, is not an isomorphism, which means that Ss, glues some elements of 

Syn,-, together, then Syn, may be incorrect. In order to prove that Syn, is correct 

we have to prove that it is not more ambiguous than Den. This amounts to proving 

that Tsi does not glue more than Td (cf. Fig. 4), or-which is equivalent, but may 

be easier to prove-that Ss, does not glue more than Sd,_, . Observe that due to the 

reachability of syntax all the diagrams of Fig. 4 commute. 

As the reader has probably noticed already, we do not assume that Syn must be 

unambiguous, i.e. that the corresponding grammar must be unambiguous (Proposi- 

tion 4.3). Apparently this may lead to an ambiguous (or nondeterministic) parsing 

algorithm since for a given element x of Syn the corresponding set of parsing trees 
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Term 

Fig. 4 

(cf. Section 4) 

7-C’.sn.x = {t 1 Ts.sn.t = x} 

may contain more than one element. Observe, however, that the ambiguity of Syn 

is allowed only if all the elements of {t] Ts.sn.t = x} are mapped into the same 

element of Den. This implies that we can transform our ambiguous parsing algorithm 

into a unambiguous one by adding to it an arbitrary procedure which chooses one 

element from each set Ts-’ .sn.x. Which parsing tree we choose does not matter 

since they are all interpreted (or compiled) into the same element of Den. 

A practical advantage of using ambiguous grammars in the description of syntax 

is twofold: First, such grammars are usually simpler and more intuitive (easier to 

read) than the equivalent unambiguous ones. Second, parsers constructed from 

them in the described way are usually faster than parsers derived from equivalent 

unambiguous grammars. Both these facts were already discussed in [l] although 

without any semantic considerations. A practical implementation of that idea may 

also be found in an algebraic-specification language OBJ (Goguen, Meseguer and 

Plaisted [15]) under the name of coercions. 

Two more remarks are in order to complete our discussion of the derivation of 

syntax. First we should emphasize that the transformations of syntax by skeleton 

isomorphisms are not as innocent as this may appear at the first moment. Although 

they always lead to a correct and context-free syntax, they may considerably change 

the parsing complexity of the corresponding grammar. The grammar of the prototype 

syntax Term is always of type LL( l), hence leads to very low-cost parsing algorithms. 

This is, of course, due to the prefix-notation style of Term. If, however, we change 

a prefix notation to an infix notation-which is a typical isomorphic transformation- 

then we may raise the complexity of our grammar to a LL( k) with k > 1, or we may 

even go beyond the LL(k)-ness (see Example 6.1). This problem seems to require 

more research and therefore we shall not discuss it further in this paper. 

Another remark concerns some limitations of our denotational model described 

by Fig. 3. As it turns out this model usually does not cover the step where we 

introduce so called “notational conventions”, e.g. where we allow for an optional 



Denotational engineering 233 

omission of parentheses and establish some priorities between operators. In such 

and similar cases our new syntax, call it post-$nal and denote by SynP’, is usually 

still a CF-algebra, but there is no homomorphism neither from Term nor from Syn 

into it. Instead, there exists a many-sorted function from Syd”‘ onto Syn (Fig. 5). 

This function is in general not a homomorphism and describes a preprocessing of 

syntax performed prior to the stage of compilation. An example of such a function 

is described in Example 6.1 which follows later. 

The mathematical semantics of Syn pf is a combination of the nondenotational 

preprocessing Pf and the denotational semantics Sd. In general this is not a denota- 

tional semantics. In this situation whether we agree to say that the semantics of 

Syn pf is “sufficiently denotational” is a pragmatic issue. On one hand it is quite 

obvious that a bad pf may completely “spoil” the denotational effect of Sd. On the 

other hand, if the differences between Syn and Synpf are minor-such as e.g. the 

optional omission of parentheses-then the denotational advantages of Syn such 

as the clarity of the definition of semantics, the feasibility of structured programming, 

the ease in developing proof rules, are all inherited by SyrP’. The user of the system 

does not even need to see the grammar of Syn”’ nor the formal definition of PJ: In 

the manual of the system we give a full grammar of Syn along with the corresponding 

denotational semantics. The post-final syntax and Pf may be described informally. 

Their forma1 definitions are of interest only for the implementor of the system. 

Example 6.1. Here we derive a syntax for the algebra of denotations defined in 

Example 5.1. This requires a formal establishment of the signature of that algebra 

together with the interpretation functions car and fun. What has been informally 

called a signature of Den, formally is only a metaexpression which defines the sorts 

and the arities of the operations of Den. When we want to formally talk about 

syntax, we have to precisely distinguish between the carriers and the operations of 

an algebra on one had and their names-i.e. the elements of the signature-on the 

T/ ’ Td 

Sd - Uen 

Pf 

Fig. 5 
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other. Let then Den = (Sig, car,fun) and Sig = (Sn, Fn, sort, arity) where: 

Sn = = {(id), (ex), (co)}, 

Fn = {$create_x, $create_y, $evaluate, . . . , $while}; 

car.( id) = Identifier, 

car.{ ex) = Evaluator, 

car.( co) = Executor; 

fun.$create_x = create-x, 

fun.$while = while. (6.1) 

Functions sort and arity are implicit in (5.2). After having defined the signature 

of Den we have a unique corresponding algebra of terms Term. We describe it by 

a grammar Gra, which can be effectively derived (in an obvious way) from the 

signature of Den: 

(id)::= 

$create_x 

/ $create_y 

(ex)::= 

$evaluate( (id)) 

1 $e_one 

I $e-pW(ex), (4) 

(co): := 

$assign((id), (ex)) 

I$continue((co), (co)) 

IW((ex), (co), (co)) 
I$while((ex), (co)). 

The prototype syntax which is defined by Gra, is, of course, rather inconvenient. 

For instance, it forces us to write: 

$while($e_less($create_x, $create_y), 

$assign($create_x, $e_plus($create_y, $e_one))) 

where we would rather prefer to write something like: 

WHILEX<Y DOX:=J’+l OD. (6.2) 

In the next step we modify our prototype syntax by introducing an infix notation 

and simplifying keywords. This corresponds to a homomorphism 

Ss, : Syn, + Syn, 

which is defined below. We assume that ide, exp and corn are metavariables ranging 
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over the corresponding carriers of Term. For a better readability of equations 

everywhere in the sequel we close the syntactic arguments of homomorphisms in 

square brackets. Notice that square brackets belong to metanotation whereas the 

parentheses “(” and “)” belong to the concrete syntax of the language which is 

being defined. 

Ss,.(id).[$create_x] =x, 

Ss,.(id).[$create_y] =y; 

Ss,.(ex).[$evaZuate(ide)] = ide, 

Ss,.(ex).[$e_one] = 1, 

+,.(ex).[$plus(exp,, exp,)] = (Ss,.(ex).[exp,]+Ss,.(ex).[exp,]); 

Ss,.(co).[$assign(ide, exp)] = 

Ss,.(id).[ide]:= Ss,.(ex).[exp], 

Ss,.(co).[$continue(com,, comJ] = 

(Ss,.(co).[com,]; Ss,.(co).[com,]), 

Ss,.(co).[$if(exp, corn,, comJ] = 

IF Ss,.(co).[exp] THEN Ss,.(co).[com,] ELSE Ss,.(co).[com,] ~1, 

Ss,.(co).[$while(exp, corn)] = 

WHILE SS,.(eX).[eXp] DO SS,.(CO).[CO??I] OD. 

The algebra Syn, is implicit in the definition of that homomorphism. Since our 

homomorphism is a skeleton isomorphism, the new syntax is correct and context-free. 

A grammar of that algebra may be derived directly (and mechanically) from the 

definition of Ss, and is the following: 

(id)::=x[y, 

(ex)::=(id)lll((ex)+(ex))l . . . , 

(co)::=(id):=(ex)l((co); (co)) 

(IF (CX) THEN (CO) ELSE (CO) FI 

1 WHILE (eX) DO (CO) OD. 

(6.3) 

Observe that in the new syntax x corresponds to the former $create_x or to 

$eualuate(x) depending whether it stands for an identifier or for an expression. The 

same concerns y. This may lead to a false conclusion that Ss, is not an isomorphism. 

In fact, however, it is an isomorphism since its “gluing effect” is split between two 

different sorts: 

Ss,.( id).[$create_x] = x, 

Ss,.(ex).[$evaZuate(x)] =x. 

In the future definition of semantics the meaning of x is always identified by the 

context where x appears. 

It should also be noticed that although the grammar of Syn, was of the type 

LL(l), the new one is not an LL(k) for any k, which is due to the infix notation of 
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expressions. This only shows that a skeleton-isomorphic transformation of syntax 

may substantially change the parsing category of a language. 

The new syntax is much more readable than the former but it is still rather 

awkward since it forces us to write semantically superfluous parentheses such as 

e.g. in ((x:= 1; y := 1); x:= (x-t 1)). We make therefore another modification of 

syntax and define the second homomorphism Ss? : Syn, + SynZ. This homomorphism 

should lead to the replacement of the production (co) + ((co); (co)) by the production 

(co) + (co); (co), leaving all the other productions unchanged. An explicit definition 

of that homomorphism is the following, where (*) marks the critical equation: 

Ss,.( id).[ ide] = ide (Ss,.( id) is an identity), 

Ss,.( ex).[ exp] = exp (Ss,.( ex) is an identity), 

Ss,.(co).[ ide := exp] = Ss,.( id).[ ide] := S.s,.( ex).[ exp], 

(*) Ss,.(co).[(com,; comz)] = Ss,.(co).[com,]; Ss,.(co).[com,], 

SS~.(CO).[IF exp THEN corn, ELSE corn2 FI] = 

IF SS,.(CO).[f?Xp] THEN Ss,.(CO).[COm,] 

ELSE SS,.(CO).[ COm,] FI 

&.(CO).[WHILE exp DO corn OD] = 

WHILE Ss,.(ex).[exp] DO Ss2.(co).[com] OD. 

In applications it may be advisable that homomorphisms between context-free 

algebras are described by the corresponding transformations on grammars. This 

requires, of course, some care since not every transformation of a grammar corre- 

sponds to a homomorphism. We shall not tackle this issue here leaving it as a little 

research problem for the reader (cf. Section 7). 

Of course, our second homomorphism is not an isomorphism and therefore we 

have to prove that Syn, is not more ambiguous than Den. Since Syn, is correct, this 

amounts to proving that Ss, is gluing not more than Sd, (cf. Fig. 4), i.e. that for 

any sort sn E {(id), (ex), (co)} and any two elements syn, and syn, from the sn-carrier 

of Syn,: 

Ssgn.[ syn,] = Ss,.sn.[syn,] implies Sd,.sn.[syn,] = Sd,.sn.[syn,]. (6.4) 

The proof of this fact is rather long and therefore we postpone it till the end of this 

section. 

The resulting syntax Syn, is not yet quite acceptable since instead of writing (6.2) 

we have to write: 

WHILE (X < y) DO X := (y + 1) OD 

with two pairs of “superfluous” parentheses. In this case, however, we cannot simply 

allow for the omission of parentheses in expressions, since this would lead to a too 
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ambiguous syntax. For instance, the expressions ((x+-v) * x) and (x+(y * x))- 

which would reduce to the same expression xfy * x-have different denotations. 

The described problem is quite typical and is usually resolved by assuming that 

parentheses in expressions are optional and that usual priorities between operators 

hold. In our case this leads to a next syntax Syn”‘, which we call a post-jinal syntax 

and which is described by the following grammar: 

(id)::=x(v 

(ex)::=(ih)ll~((ex)+(~x))~(e.w)+(EX)~. . 

(co)::=(as before). 

The relationship between the former and the new syntax is described by a 

many-sorted function: 

Pf: SynP’+ Syn, 

which adds all missing parentheses to expressions in following the established 

priorities among operators. For instance: 

J’jI( id).[x] = x, 

W(ed.Cx<yl=(x<yL 

Pf.‘(ex).[(x+y)*x+y]=(((x+y)*x)+y), 

P~(CO).[WHILEX<yDOX:=(X+y)*X+yOD]= (6.5) 

WHILE @(ex).[x<y] DO @I(id).[x]:= Pj(ex).[(x+y) * x+y]o~= 

WHILE. (X<y) DO X:= (((X-ty) * X)+y) OD 

etc. 

Contrary to all former transformations of syntax, the many-sorted function Pf is 

not a homomorphism and therefore it cannot be given an inductive definition. First 

of all, Syd” has a different signature than Syn2. This follows from the fact that in 

the post-final syntax each data-type operator gives rise to two syntactic operations. 

E.g. the operator “+” allows for the construction of exp, + exp, and of (exp, + exp,). 

For that reason Pf cannot be a homomorphism in the sense defined in Section 2. 

We could have thought, however, about a homomorphism in a more general sense 

which allows a so-called morphism of signatures (see e.g. [13]). In that case we are 

allowed to glue not only the elements of an algebra, but also its operations. A 

generalized homomorphism, similarly to the usual one, may be given an inductive 

definition and retains practically all the advantages of a denotational semantics in 

the old sense. In particular, the equivalence relation, which it defines in the source 

algebra by x = y iff (definition) H.x = H.y, is a congruence relation. It turns out, 

however, that Pf is not a homomorphism even in the generalized sense. Indeed, 

although 

W(d[x+.vl= pJ(ex).[(x+y)I, 

if we substitute (x +y) for x + y in a larger context, then the resulting expressions 
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need not be equivalent: 

pJ.‘(ex).[x+y * x] = 

(x+(y*x))f 

((x+Y)*x)= 

Pf.'(4.[(Xt-Y) * xl. 

By the same argument we may show that the combination of Pf with Sd is not a 

homomorphism. 

Since Pf is not a homomorphism it cannot be given an inductive definition. 

Observe, however, that this concerns only P’(ex). The other components retain the 

compositionality property as can be seen e.g. from the equation (6.5). The full 

definition of Pf splits, therefore, into two parts: a noncompositional definition of 

pf(ex) (e.g. by means of an automaton) and a structural-inductive definition of 

P’(id) and PJ(co). We leave the details of this definition to the reader. 

In applications, a forma1 definition of w is of interest only for compiler designers. 

For the user of the system the grammar of the final syntax Syn, along with an 

informal description of q (regarded as notational conventions) will usually do. 

On the other hand when we address the definition of a system to the user, then 

it may be appropriate to “unfold” in the definition of Sd, the definitions of the 

corresponding functions from Den. For instance, instead of writing: 

Sd,.( ex).[ (exp, + expJ] = 

e_plus.( Sd,.( ex).[ exp,], Sd,.( ex).[ exp,]) 

we write in such a case (cf. Example 5.1): 

E.[(exp, + exp,)].sta = 

let ml, = E.(exp,).sta in 

let val, = E.( exp,).sta in 

val, & Nat + err, 

val, c? Nat -f err, 

TRUE + plus.( val, , ml,), 

where E stands for Sd,.(ex). This is, of course, just a usual traditional form of a 

denotational definition. 

With this remark we have completed the derivation of syntax and now we can 

proceed to the postponed proof of (6.4). We have to warn the reader that despite 

the simplicity of our example the proof is rather long since it indicates a certain 

genera1 method of proving the correctness of a transformation of syntax where we 

allow for the omission of parentheses. 

In order to prove (6.4) we have to explicitly define the homomorphism Sd,. We 

recall that Sd, is the unique homomorphism which satisfies the equation: 

Td = Ss, . Sd,. 

Its definition is, therefore, implicit in the definitions of Ss, and Td. The former has 

been given explicitly earlier and the latter is implicit in equations (6.1) and (2.3). 



Denotational engineering 239 

Leaving to the reader all calculations-a job which normally should be done by a 

computer-we come out with the following explicit definition of Sd,: 

Sd,.(id).[x] = create-x, 

Sd,.(id).[y] = create-y, 

Sd,.(ex).[ ide] = evaluate.ide, 

Sd,.(ex).[l] = e-one, 

Sd,.(ex).[(exp, + exp,)] = 
e_plus.(Sd,.(ex).[exp,], Sd,.(ex).[exp,]), 

Sd,.(co).[ide := exp] = assign.(Sd,.(id).[ide], Sd,.(ex).[exp]), 

Sd,.(co).[(com,; com2)] = 

continue.(Sd,.(co).[com,], Sd,.(co).[comJ), 

Now observe that since the components Ss,.(id) and Ss,.(ex) are identities, we only 

have to prove (6.4) for sn = (co). In that proof we shall use some concepts and facts 

from the theory of term-rewriting systems. Since a full forma1 introduction of all 

these concepts would lead us beyond the scope of this paper, we decided to assume 

that the reader is familiar with the idea of term-rewriting systems and we refer 

him/her for details to two survey papers of Huet [19] and Klop [20]. 

Let Corn denote the carrier of commands of Syn, and let corn possibly with 

indices denote an element of Corn. Given a term-rewriting system (TRS) we say 

that comr is a reduct of corn in TRS, which we denote by 

corn * corn’ 

if comr results from corn by an application of one rule of TRS. We say that corn is 

in a normal form if it has no reduct. By +* we denote the transitive and reflexive 

closure of 3. 

Now, the genera1 idea of our proof consists in the construction of such a TRS 

which has the following properties: 

(1) Corn is closed under =+, 

(2) + preserves the denotations of commands, i.e. if corn, =+ comz, then 

Sd,.(co).[com,] = Sd,.(co).[com,], 

(3) + preserves the Ss,-forms of commands, i.e. of corn, 3 com2, then 

Ss,.(co).[com,] = S.s,.(co).[com,], 

(4) each command has a unique normal form, 

(5) if two commands in a normal form have the same Ss,-form, then they are 

identical. 

If a TRS with the properties (l)-(5) exists, then (6.4) is true. Indeed, take two 

commands corn, and corn2 with the same &,-form. By (4) and (1) there exist their 

unique normal forms corny and corny which by (2) have the same denotations as 

corn, and corn2 and by (3) have the same &,-forms respectively. By (5) our 
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normal-form commands are identical, hence they have the same denotations, hence 

also corn, and corn2 have the same denotations. 

The TRS which we shall use in our proof consists of only one rule: 

((c,; 4; cd-z cc,; cc,; cd), (6.6) 

where the ci are variables ranging over Corn. Informally speaking this rule allows 

for the “application” of the associativity of the meaning of semicolon to commands. 

Now we shall show that (6.6) satisfies (l)-(S). The proofs of (l)-(3) are routine by 

structural induction and therefore omitted. We only mention that in the proof of 

(2) we use the associativity of the operation continue from Den. 

Proof of (4). First observe that our TRS has a so-called termination property, i.e. 

that there are no infinite reduction sequences of the form corn, + corn2 3 . . . . In 

our case the proof of this fact is quite simple (again by structural induction), but 

in the general case it may be far from trivial. There are, however, several standard 

techniques of proving the termination property of a TRS (see e.g. Klop [20]). 

Due to the termination property the proof of (4) reduces to proving that each 

so-called critical pair of commands has a common normal form. In a general case 

a critical pair in a term-rewriting system is a pair (p, q) of terms constructed for a 

triple: 

((a, + b,), (a,+ &), n), 

where (a, + b,) and (az+ b,) are rewriting rules, and u is a subterm of a, which is 

not a single variable and which is unifiable with a2. The latter means that there 

exist two substitutions S and S’ (mappings from variables to terms) such that 

S(u) = S’( a2). If this is the case, then we take the least common unification w of u 

and a, which has no common variables with a, and two corresponding substitutions 

S, and S,: 

S,(U) = w = S2(a2). 

Given this we can reduce S,(a,) into two terms which constitute the critical pair 

(p, q) where p is the effect of the application of (a, + b,) and therefore equals S, (b,), 

and q is the effect of the application of (a* + b,) and therefore results from S,(a,) 

by the substitution of $(b,) for u. 

If a critical pair exists for a given triple, then it is unique up to a permutation. 

In our case we have only one rule and therefore we construct a critical pair for that 

rule with itself. We have two instances of nontrivial subterms of the left-hand side 

of the rule. The first is the whole left-hand side and leads to a trivial critical pair 

where p = q. The second is u = (c, ; c2) in which case we have: 

w = ((c,,; cl,); cd, 

Sl(Ql) = (((cl,; d; 4; 4, 

P = ((Cl1 ; c,J; (c2; 4L 
9 = ((cl,; (cl,; 4); 4. 
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We leave it to the reader that p and 9 reduce to the common normal form 

(c11; (cl,; cc *; q))). This completes the proof of (4). 0 

In our case the proof of (4) was rather simple due to the simplicity of the TRS. 

In more complicated cases we can use, however, a superposition algorithm for the 

generation of critical pairs and a Knuth-Bendix algorithm [21] for the completion 

of an underlying TRS, i.e. making it satisfy property (4). 

We should mention in this place that in the general theory of term-rewriting 

systems one usually assumes that the underlying set of terms is a set of unambiguously 

parsable prefix terms. In our case commands are infix rather than prefix terms, but 

since the corresponding grammar is unambiguous we can apply the general theory 

without major modifications. It is not known to the author whether the theory 

extends to the case of an ambiguous syntax of terms. So far, therefore, we may only 

advise that the nonisomorphic modifications of syntax be performed in one step, 

at least if one wants to use our method of proving (6.4). 

Proof of (5) (by structural induction). First we introduce an auxiliary concept. A 

command is said to be open (open for an exchange of its subcommands with a 

context) if it is of the form (corn ,; corn,), and is said to be closed otherwise. Let 

corn, and corn2 be in a normal form and have the same %,-form, i.e. 

Ss,.(co).[com,] = Ss,.(co).[com,]. 

This implies that corn, and corn2 are of the same grammatical category (assignment, 

if, “;” or while), hence either both are closed or both are open. We have three cases 

now: 

Case 1. corn, is an assignment, in which case we are done. 

Case 2. corn, is not an assignment but is closed, in which case we apply the 

inductive assumption. 

Case 3. corn, is open and therefore also corn2 is open and 

corn, = (corn,, ; corn,,), 

corn2 = (corn*, ; com2J. 

In that case the following facts can be shown: 

(i) corn,, and com2, are closed and in a normal form (obvious), 

(ii) corn,, and corn>* are in a normal form (obvious), 

(iii) comll and comz, have the same Ss,-form (since they are closed and corn, 

with corn2 have the same Ss,-forms) and therefore by inductive assumption they 

are equal. 

(iv) corn,* and comz2 have the same Ss,-form (by (iii)) and therefore by the 

inductive assumption they are equal. 

This completes the proof of (5) and therefore also of (6.4). 0 



242 A. E/d& 

7. Problems related to the derivation of syntax 

Our approach to the derivation of a custom-made syntax (Sections 4 and 6) leaves 

open many theoretical and practical problems. In this section we try to identify 

some of them. We split our list of problems into two groups: general problems and 

problems related to the development of a computer-support system. 

7.1. General problems 

Problem 7.1.1. Investigate if it may be of a practical or theoretical interests to allow 

non-context-free algebras in the definitions of syntax. For instance, in the Example 

6.1 we may define syntax Syn, by such a modification of Syn, where all operations 

of sort (id) and (ex) remain unchanged and where the operations of sort (co) are 

defined as follows: 

fin-s.$assign.(ide, exp) = ide := rop.exp, 

fun-s.$iJ(exp, corn,, corn?) = 

IF t'Op,CXpTHEN COm, ELSE COmz FI, 

fun-s.$while.(exp, corn) = WHILE rop.exp DO corn OD. 

The function rop (remove outer parentheses) is a function which removes outer 

parentheses from expressions, and fin-s is a function which assigns operations to 

operations’ symbols in Syn,. As is easy to check, the new syntax is an isomorphic 

image of the former (hence is correct!), but since the corresponding isomorphism 

has no skeleton, our final algebra is not context-free. Formally speaking it cannot 

be described by a context-free grammar, but of course a part of it (the carriers of 

(id) and (ex) has a context-free grammar and the remaining part may be described 

by something like a “CF-grammar with functions”. Observe also that given a parser 

(compiler) fo r S yn, it is not difficult to construct one for Syn,. 

Problem 7.1.2. Since in the applications we may wish to use ambiguous grammars, 

for which we still want to develop efficient parsers (cf. our remarks in Section 6), 

define and investigate parsing-complexity categories, such as e.g. LR(k)-ness or 

LL(k)-tress, for ambiguous grammars. 

Problem 7.1.3. Identify a class of typical (in applications) transformations of alge- 

bras and grammars which correspond to homomorphisms (isomorphisms). This may 

include the renaming of selectors, passing from prefix to infix notation, the permuta- 

tion of nonterminals in the right-hand sides of productions, etc. Classify these 

transformations with respect to their effect on: 

- context-freeness, 

- ambiguity, 

- parsing category, 
- other properties (?) 

of target syntax. 
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Problem 7.1.4. Characterize the class of monoskeleton algebras. If there are two 

grammars for the same algebra, can they belong to different parsing categories? 

Problem 7.1.5. Our definition of a context-free algebra does not allow for a permuta- 

tion of arguments by an operation. This may be repaired by generalizing the concept 

of a homomorphism as suggested at the end of Section 4. lnvestigate this solution. 

Problem 7.1.6. In the life-cycle of a software system we usually modify the system 

by adding and/or removing some operations. On the ground of our model this 

corresponds to the extensions and the restrictions of the algebra of denotations. Of 

course, when we change the algebra Den we also have to change the algebra Syn, 

and we want to do this in such a way that as much as possible of the old syntax 

remains legal and means the same as before. Investigate this problem and try to 

characterize such transformations of Den which lead to as much as possible “con- 

servative” transformations of Syn. 

7.2. Problems related to the development of a computer support 

The process of syntax derivation consists of several steps where we transform 

algebras and/or grammars. In each step we have to prove that our target syntax 

has several properties. This leads to the necessity of developing appropriate 

algorithms and specification techniques. 

Problem 7.2.1. How should we specify (represent) homomorphisms between alge- 

bras in the process of syntax design? There seems to be two generally different ways 

of doing this. We can either specify a homomorphism by equations, in which case 

the computer has to generate the target algebra or grammar, or we can specify it 

implicitly by modifying the source algebra, in which case the computer has to check 

whether our modification indeed corresponds to a homomorphism. 

Problem 7.2.2. Develop algorithms which support the following logical and transfor- 

mational steps in the derivation of Syn, from Syn,_, (cf. Fig. 4): 

(1) Check the following properties of Ss,: 
_ is Ss, a skeleton homomorphism? 
- is Ss, an isomorphism? 
- is Ssi not gluing too much (is Syn, correct)? 

(2) Check the parsing category of Syn, given the parsing category of Syn,_, . 

(3) Construct the homomorphism Ts, :Term+ Syn, or the inverse of this 

homomorphism, i.e. the parsing transformation. This may be constructed either only 

once in the last step, or by modifying Ts,_, to Tsi in each step. Observe that if the 

definition of Den has been written in an implemented metalanguage, than the inverse 

of Ts, may be regarded (used as an interpreter, since with every syntactic object it 
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assigns an executable expression. At the same time, however, it may also be 

interpreted as a parser. 

8. A little case study: The development of a word processor 

In this section we discuss an example which is a little more realistic than that 

discussed in Sections 5 and 6: the development of a simple wordprocessor. For the 

sake of brevity we describe only a few typical functions of such a processor and 

we omit any formal consideration of the problem of the screen representation of a 

document. We start from the development of the algebra of data, where the major 

concept is that of a document. 

A document appears to the user as a pair of strings of characters separated by a 

cursor. The string which precedes the cursor is called the prefix and the string which 

follows the cursor is called the postjx. If the postfix is nonempty, then its first 

character is called the current character and is pointed to by the cursor. 

A document may be elaborated in one of two regimes: development (DEV) or 

marking (MARK). In the former regime we have available such functions as e.g. 

typing a character into the document, shifting the cursor, pasting a previously stored 

block into a document, saving the document in the memory, etc. In the latter, we 

may mark a part of a document and then either delete it or store it for the future 

copying or moving. The marked part is called a block. In the MARK regime a block 

appears on the screen as a highlighted postfix of the prefix (i.e. the marking command 

works only forwards). In the DEV regime the block is not displayed on the screen 

but is stored in the memory. 

In the regime of development the user may choose between two different working 

modes: inserting (INS) and overtyping (OVE). When the system is switched from 

DEV to MARK the information about the actual mode is stored for the future use. 

We assume that the system may communicate some messages to the user, especially 

in the case of errors. 

We start our formal definition from defining the domain of documents: 

dot : Document = Prejix x Block x Postfix x Mode x Regime x Message, 

pre : Prejix = Text, 

post: Postfix = Text, 

block : Block = Text, 

text: Text = Character’*, 

char : Character = {a, b, . . . , A, B, . . . , 1,2, . . . , 0, !, @, #, . . .>, 

mode : Mode = {INS, OVE}, 

reg:Regime= {DEV,MARK}, 

mes : Message = {OK}1 Error, 

err : Error = . . . . 
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The elements of the domain Error will be established later in the course of defining 

the actions of our system. Now, let us start from basic operations on documents 

that we want to have in the system. First we choose their names, sorts and arities, 

i.e. we define the signature of the algebra Dat: 

create-ed : + Document 

(create empty document), 

type-a : Document + Document 

(type character “a” (type-char for any char E Character)), 

in-toggle : Document + Document 

(toggle between INS and OVE), 

set-mark : Document + Document 

(set the MARK regime), 

f-shif : Document + Document 

(shift cursor forwards one character), 

b-shif : Document + Document 

(shift cursor backwards one character), 

copy : Document + Document 

(store block for future copying), 

move : Document + Document 

(store block for future moving), 

del: Document + Document 

(delete block), 

paste : Document + Document 

(insert block into the text). 

(8.1) 

Below we define our operations. Let “I” denote the concatenation of strings and 

let head and tail denote the usual functions on strings with head.{ ) =( ) and 

taiL( )=( ), where ( ) denotes the empty string. 

create-ed.( ) = (( ), ( ), ( ), INS, DEV, OK). 

This operation creates a document with an empty prefix, empty block and empty 

postfix and with the default mode INS and default regime DEV. The initial message 

is, of course, “ok”. 

type-a.( pre, block, post, mode, reg, mes) = 

reg = MARK+( pre, block,post, mode, reg, INVALID OPERATION), 

mode = INS + (pre*(a), block, post, mode, reg, OK), 

mode = OVE + (pre^(a), block, tail.post, mode, reg, OK). 

This operation is available only in the DEV regime and depending on the actual 

mode it either inserts an “a” at the current position or overtypes with “a” the 

current character. We assume to have such an operation for each character separately. 

This means that the user is able to type any character from the keyboard into the 
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document. 

in-toggle.( pre, block, post, mode, reg, mes) = 

reg= MARK+{ pre, block,post, mode, reg, INVALID OPERATION), 

mode = INS + (pre, block, post, OVE, reg, mes), 

mode = OVE + (pre, block, post, INS, reg, mes). 

This operation is available in the DEV regime and toggles between the modes INS 

and OVE. 

set-mark.(pre, block, post, mode, reg, mes) = 

reg = DEV+ (pre, ( ), post, mode, MARK, OK), 

reg = MARK + ( pre, block, post, mode, reg, 

YOU ARE ALREADY IN MARK REGIME). 

This operation is available in the DEV regime. It switches the regime into MARK and 

empties the block. 

f-shift.( pre, block, post, mode, reg, mes) = 

reg = DEV + (pre*( head.post), block, tail.post, mode, reg, OK), 

reg = MARK + (pre, block*( head.post), tail.post, mode, reg, OK). 

This operation is available in both regimes. It shifts the cursor one character forwards 

unless the postfix is empty. In the DEV mode this results the shifting of the first 

character from the postfix to the prefix; in the MARK mode-the shifting of the same 

character to the block. In the latter case the part of the text stored in the block is 

highlighted on the screen. The operation of shifting the cursor backwards is defined 

analogously. Of course, in the MARK regime backwards shifts demark the formerly 

marked text. 

The operations copy, move and de1 are available only in the regime MARK and 

all of them change the regime to DEV. The first adds the content of the block to the 

prefix (i.e. leaves the portion of the formerly highlighted text in the document) and 

stores the block for the future use: 

copy.( pre, block, post, mode, reg, mes) = 

reg = MARK + (pre^block, block, post, mode, DEV, OK), 

reg = DEV+ (pre, block, post, mode, reg, INVALID OPERATION). 

The operation move stores the block but does not add it to the prefix, and the 

operation de1 only empties the block. Formal definitions are left to the reader. The 

operation paste is available in the DEV regime and copies the block into the document 

at the current position. Then it empties the block: 

paste.(pre, block, post, mode, reg, mes) = 

reg = DEV + (pre^block, ( ), post, mode, DEV, OK), 

reg= MARK+ (pre, block,post, mode, reg, INVALID OPERATION). 

Observe that all our operations do not depend on the message component of the 

document and whenever an error message is generated the other components of the 
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document remain unchanged. This means that the only reaction of the system to a 

user’s error is to display an error message without doing nothing with the rest of 

the document. An error does not suspend the system and any next correct move of 

the user generates an “OK" message. 

With this we have completed the development of the algebra Dat of data. Now 

we proceed to the second stage where we define a computer system based on that 

algebra. We assume that in this system we should be able to keep a current document 

in computer memory, to perform all defined operations on it, to save the textual 

part of the document for the future use and to retrieve the formerly saved file for 

elaboration. Later we shall also show how to enrich our system by the mechanism 

of procedures. So far we define the following domains: 

sto : Store = Identifier + *, Text, 

ide : Identijer = Character, 

sta : State = Document x Name x Store, 

name : Name = Identijier, 

exe : Executor = State + State, 

ini : Initiator = Store -+ State, 

ter : Terminator = State + Store. 

In the stores we store text files named by identifiers. For simplicity we assume that 

identifiers are single characters. A state (of the system) consists of a document, a 

name of that document and a store. Actions which our system may perform are of 

three types: executors which modify states and which are used during a session with 

the system, initiators which create states from stores and which are used to initiate 

a session and terminators which reduce a state to a store and which are used to 

close a session. 

Below we define the constructors of executors, initiators and terminators. 

Analogously as in the Example 5.1 (cf. (5.1)) we first “lift” all operations of the 

algebra Dat to the level of the constructors of executors. For each non-zero-ary 

operation on documents, 

oper : Document + Document, 

we define the following zero-ary constructor of executors: 

co-oper : + Executor, 

co-oper.( ).(doc, name, sto) = (oper.doc, name, sto). 

Each such a constructor generates an executor which modifies only the document 

component of a state and does that by applying the corresponding operation on 

documents. We have, therefore, the following executor constructors: co-type-a, 

co-in-toggle, co-copy, etc. We do not assign such a constructor to create-ed since this 

operation will be used later to define an initiator. 

The constructors which have been defined so far are zero-ary, i.e. they correspond 

to primitive executors. Each such an executor is “activated” by the user by only 
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communicating the name of the corresponding constructor to the system, but without 

giving any arguments. Below we define two constructors which are not lifted 

operations of Dat and which have nontrivial arities: 

rename : IdentiJier -+ Executor 

(rename the current file), 

extcopy : IdentiJer + Executor 

(external copy); 

rename.ide.(doc, name, sto) = (dot, ide, sto); 

extcopy.ide.(doc, name, sto) = 

let (pre, block, post, mode, reg, mes) = dot in 

sto. ide = ? + (( pre, block, post, mode, reg, NO SUCH FILE), name, sto), 

TRUE + (( pre^(sto.ide), block, post, mode, reg, OK), name, sto). 

Here sto.ide=? is a shorthand for “not sta E dom.sto” and therefore is satisfied 

whenever ide does not belong to the domain of sto. The first operation changes the 

name of the current document, the second copies an indicated textfile into the 

current position of the current document. 

Now we proceed to the constructors of initiators and terminators. We assume to 

have four following constructors: 

create : Identijier + Initiator 

(create a new document), 

edit : Identijier -3 Initiator 

(adit an existing document), 

save : + Terminator 

(save the current document), 

quit: + Terminator 

(quit without saving). 

For the sake of brevity we give only two of the corresponding definitions: 

create.ide.sto = (create-ed.( ), ide, sto), 

save.(( pre, block, post, mode, reg, mes), name, sto) = 

sto[ preApost/ name]. 

First operation creates a state with an empty document. The other, stores the 

concatenation of the prefix and the postfix of the current document under the given 

name in the store. 
At the end we have to define the constructors of identifiers since the latter appear 

as the arguments of some of our formerly defined constructors. Since identifiers are 

just characters, we assugn with each character a corresponding constructor: 

makeide-a : + Identi$er 

makeide-a.( ) = a 
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This completes the development of the algebra Sys. Now we select Den in Sys by 

selecting the operations which we want to make accessible to the user: 

makeide-a : + Identijier (analogously for other characters), 

co-type-a : + Executor (analogously for other characters), 

co-paste : + Executor, 

rename : Identijier + Executor, 

extcopy : IdentiJier -+ Executor, 

create : Identijier + Initiator, 

edit : Identljier + Initiator, 

save : + Terminator, 

quit : + Terminator. 

(8.2) 

In contrast to the signature (5.2) in our former example, the present signature 

gives rise to a very poor syntax reduced to a finite list of the names of actions 

available in the system. It is so because there are no programming facilities in the 

system, e.g. there are no constructors neither of executors nor of initiators, nor of 

terminators that take these actions as arguments. In such a case the derivation of 

syntax is trivial and therefore we omit this step in our example. 

Now we may proceed to extending of our model by procedures. We assume that 

by a procedure we shall mean any sequence of executors stored for a future execution. 

Of course, in the abstract model we shall not store the sequences of executors 

themselves, but their intended effects, hence state-to-state transformations. We 

introduce, therefore, two new domains: 

proc : Procedure = State + State, 

p-sto : Proc-store = IdentiJer +m Procedure, 

and we rename the former domain Store to 

f-sto : File-store = IdentiJer +m Text. 

Here the reader may wonder why we have introduced separate domains of stores 

for procedures and for textfiles. The reason is such that procedures should have no 

access to procedure stores (should not be self-applicable), whereas executors must 

have such an access in order to execute procedure calls. This will be seen better 

when we define our new domains and constructors: 

sta : State = Document x Name x File-store, 

env : Environment = State x Proc-store, 

sto : Store = File-store x Proc-store; 

exe : Executor = Environment + Environment, 

dec : Declarator = Environment + Environment, 

p-body : Proc-body = Environment + Environment, 

ini : Initiator = Store + Environment, 

ter : Terminator = Environment + Store. 
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States in the new sense are the same as before (since File-store is the same as the 

former Store) and environments consist of a state and a procedure store. Now, 

executors have access to the whole environment but procedures only to its state 

component. This protects procedures against self-applicability and makes our set 

of domain equations solvable in set theory (see [lo] and [9]). The domains of 

executors, declarators and procedure-bodies are identical, but since they are going 

to have different associated constructors, their corresponding reachable parts in the 

algebra of denotations will be different. 

Now we are ready to specify the signature of the new algebra Den. It consists of 

the signature (8.2) of the former Den-but with the new meanings of domains-plus 

the following operations: 

make-body : Executor + Proc-body, 

continue : Proc-body x Proc-body + Proc-body, 

call : Identijer + Executor, 

declare : Identijer x Proc-body + Declarator. 

Given this new signature we have to redefine the “old” constructors and to define 

the new ones. The former task is quite routine since the new constructors define 

executors, initiators and terminators which “do the same as before”, but now may 

receive in the arguments and/or return in the values also procedure-stores. E.g. in 

the new version the constructor rename, given an identifier produces an executor 

which does the same as before with the state and keeps the procedure-store com- 

ponent unchanged: 

rename.ide.((doc, name, f-sto), p-sto) = 

((dot, ide, f-sto), p-sto). 

Now we define new constructors. The first makes a procedure from an executor: 

make-body.com = corn. 

Observe that this is not an identity function, since the type of its argument is different 

from the type of its value. 

continue.( p-body,, p-body,) = p-body, . p-body,. 

This is the usual “;” operation (as e.g. in Example 5.1) just that in our case it is 

applicable to procedure bodies rather than to executors. This means that we may 

declare as a procedure a sequence of executors to be executed one after another, 

but such a sequence is not itself an executor. 

Procedure calls are defined as follows: 

call. ide.( sta, p-sto) = 

let ((pre, block, post, mod, reg, mes), name, f-sto) = sta in 

p-sto.ide=?+ (((pre, block, post, mod, reg, NO SUCH PROCEDURE), 

name, f-sto), p-sto), 

let proc = p-sto. ide in 

(proc.sta, p-sto). 
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A procedure call generates an executor that executes a procedure stored under ide 

in the current procedure-store. If there is no such procedure then the call issues an 

appropriate error message. 

Now we come to the problem of defining procedure declarators. Since procedure 

calls are executors, they may appear in procedure bodies and therefore we have to 

decide if they are to be interpreted as nonrecursive calls or as recursive calls. Let 

us discuss both possibilities. In the former case we define: 

declare.(ide, p-body).(sra, p-sto) = 

let proc.sta =jrst.( p-body.(sta, p-sto)) in 

(sta, p-sto[ proc/ idea]). (8.3) 

Observe that the metavariable sta, which appears in the let-in subdefinition, is bound 

and therefore represents a call-time state, whereas p-sto in the same subdefinition 

is free and therefore represents a declaration-time store. The declared procedure 

when applied to a call-time state expands it to an environment by adding the 

declaration-time procedure-store and then applies the body to that environment. 

From the resulting environment it takes the state-component as the new state. We 

emphasize that all procedure names which appear in the inner calls of proc are 

referred to the declaration-time p-sto and therefore have static bindings. Con- 

sequently, if we try to call a procedure which calls itself, then we either have an 

error signal “NO SUCH PROCEDURE”, or we call another procedure with the same 

name, if such has been declared prior to the declaration of our procedure. In any 

case such a call does not lead to a recursion. 

If we want to allow for recursive procedures, we define our constructor as follows: 

declare.( ide, p-body).(sta, p-sto) = 

letrec proc.sta =$rst.( p-body.(sfa, p-sto[ proc/ ide])) in 

(sta, p-sto[ proc/ ide]). (8.4) 

In this case proc is defined by a fixed-point equation with respect to its call or calls. 

This is, of course, quite a routine definition. It corresponds to the mechanism of so 

called static recursion since, as in the former case, the binding of all procedure 

names in the body is static. 

In the present model a procedure may call recursively only itself. Mutually 

recursive declarations will result in an error signal at the time of the call. If we want 

to allow for mutual recursion, we have to define a new declarator-constructor which 

takes a tuple of procedure-bodies and elaborates them all at once. We may also 

expand our model by allowing procedures with parameters [lo]. 

With this remark we have completed the definition of our new algebra Den. Since 

the derivation of syntax does not lead, in this case, to any problems which have 

not been discussed in Example 6.1, we leave this step to the reader as an exercise. 
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